LBO非线性晶体
LiB3O5(三硼酸锂)晶体是迄今发现可用于非临界相位匹配激光倍频的最为优良的非线性光学晶体之一,它具有良好的非线性光学特性及稳定的物化性能,其中尤为重要的是,它的色散量对温度变化很敏感,在倍频过程中可以实现非临界相位匹配,由于它的破坏阀值很大,意味着可以实现大功率的基波泵浦,同时也可采用较长的光学晶体,这些无疑对获取大功率的倍频激光很有帮助。
在1.064μm光下,LBO非线性晶体的有效SHG系数是KDP的3倍。LBO的光损伤阈值是常用无机非线性光学晶体中最高的。因此,它是高功率二次谐波发生器和其他非线性光学应用的最佳选择之一。
特点
- 高光学均匀性;
- 透明区域广泛;
- 可调波长范围大;
- 对水分的敏感性低;
- 接收角度宽,离散角度小;
- 光谱非临界相位匹配(NCPM)接近1300nm;
- 倍频转换效率较高(相当于KDP晶体的3倍);
- I,II类非临界相位匹配(NCPM)的波段范围宽;
- 高损伤阈值(脉宽为1.3ns的1053nm激光可达10GW/cm2);
物理和化学特性
属性 | 数值 |
化学式 | LiB3O5 |
晶体结构 | 斜方,空间群Pna21,点群mm2 |
晶格参数 | a=8.4473Å ,b=7.3788Å, c=5.1395Å, Z=2 |
质量密度 | 2.47 g/cm3 |
莫氏硬度 | 6 |
熔点 | About 834°C |
导热系数 | 3.5W/m/K |
双折射 | 负双轴晶体:λ=0.5321μm时2Vz =109.2˚ |
非线性光学性质
属性 | 数值 |
SHG相位匹配范围 | 551 ~ 2600nm (Type I);790-2150nm (Type II) |
NLO系数 | deff(I)=d32cosΦ(XY平面中的I型) |
deff(I)=d31cos2θ+d32sin2θ(XZ平面中的I型) | |
deff(II)=d31cosθ(YZ平面中的II型) | |
deff(II)=d31cos2θ+d32sin2θ(XZ平面中的II型) | |
NLO敏感性未消失 | d31=1.05 ± 0.09 pm/V |
d32=-0.98 ± 0.09 pm/V | |
d33= 0.05 ± 0.006 pm/V | |
热光学系数(°C,λinμm) | dnx/dT=-9.3X10-6 |
dny/dT=-13.6X10-6 | |
dnz/dT=(-6.3-2.1λ)X10-6 | |
角度接受 | 6.54mrad-cm(Φ,I型,1064 SHG)15.27mrad-cm(q,II型,1064 SHG) |
线性光学性质
属性 | 数值 |
透明范围 | 169 – 2600 nm |
吸收系数 | <0.1%/cm @1064nm;<0.3%/cm @532nm |
折光指数 | |
在 1.0642 mm | nx = 1.5656, ny = 1.5905, nz=1.6055 |
在 0.5321 mm | nx = 1.5785, ny = 1.6065, nz=1.6212 |
在 0.2660 mm | nx = 1.5973, ny = 1.6286, nz=1.6444 |
Sellmeier方程(λ in μm) | nx2=2.454140+0.011249/(λ2-0.011350)-0.014591λ2-6.60×10-5λ4 |
ny2=2.539070+0.012711/(λ2-0.012523)-0.018540λ2+2.0×10-4λ4 | |
nz2=2.586179+0.013099/(λ2-0.011893)-0.017968λ2-2.26×10-4λ4 |
相位匹配角实验值(T=293K)
相互作用波长[μm] | Φexp [deg] | θexp [deg] |
XY平面θ= 90° | ||
SHG, o+o ⇒ e | ||
1.908⇒0.954 | 23.8 | |
1.5⇒0.75 | 7 | |
1.0796⇒0.5398 | 10.6/10.7 | |
1.0642⇒0.5321 | 11.3/11.4/11.6/11.8 | |
0.946⇒0.473 | 19.4/19.5 | |
0.930⇒0.465 | 21.3 | |
0.896⇒0.448 | 23.25 | |
0.88⇒0.44 | 24.53 | |
0.850⇒0.425 | 27 | |
0.84⇒0.42 | 27.92 | |
0.836⇒0.418 | 28.3 | |
0.80⇒0.40 | 31.7 | |
0.794⇒0.397 | 32.3 | |
0.786⇒0.393 | 33 | |
0.78⇒0.39 | 33.7 | |
0.7735⇒0.38675 | 34.4 | |
0.75⇒0.375 | 37.13/37 | |
0.746⇒0.373 | 37.5 | |
0.7094⇒0.3547 | 41.8/41.9/42/43.5 | |
0.63⇒0.315 | 55.6 | |
0.555⇒0.2775 | 86 | |
0.554⇒0.277 | 90 | |
SFG, o+o ⇒ e | ||
1.3414+0.6707⇒0.44713 | 20 | |
1.0642+0.5321⇒0.35473 | 37/37.1/37.2 | |
1.053+0.5265⇒0.351 | 38.2 | |
1.0642+0.35473⇒0.26605 | 60.7/61 | |
0.86+0.43⇒0.2867 | 61 | |
1.3188+0.26605⇒0.22139 | 70.2 | |
0.21284+2.35524⇒0.1952 | 50.3 | |
0.21284+1.90007⇒0.1914 | 63.8 | |
0.21284+1.58910⇒0.18774 | 88 | |
YZ 平面, Φ=90◦ | ||
SHG, o+e ⇒ o | ||
1.908⇒0.954 | 46.2 | |
1.5⇒0.75 | 14.7 | |
1.0796⇒0.5398 | 19.2 | |
1.0642⇒0.5321 | 19.9/20.5/20.6/21.0 | |
SFG, o+e ⇒ o | ||
1.0641+0.53205⇒0.3547 | 42/42.7 | |
1.0642+0.5321⇒0.35473 | 42.2/42.5/43.2 | |
XZ 平面, Φ=0◦, θ<VZ | ||
SHG, e+o ⇒ e | ||
1.3414⇒0.6707 | 3.6/4.2/5.0 | |
1.3188⇒0.6594 | 5.2 | |
1.3⇒0.65 | 5.4 | |
XZ 平面, Φ=0◦, θ>VZ | ||
SHG, e+e ⇒ o | ||
1.3414⇒0.6707 | 86.1/86.3/86.6 | |
1.3188⇒0.6594 | 86 | |
1.3⇒0.65 | 86.1 | |
1.24⇒0.62 | 86 |
非关键相位匹配(NCPM)温度的实验值
相互作用波长[μm] | T[℃] |
沿X轴 SHG, typeⅠ | |
1.547⇒0.7735 | 117 |
1.46⇒0.73 | 50 |
1.252⇒0.626 | 3.5 |
1.25⇒0.625 | -2.9 |
1.215⇒0.6075 | 21 |
1.211⇒0.6055 | 20 |
1.206⇒0.603 | 24 |
1.2⇒0.6 | 24.3 |
1.15⇒0.575 | 61.1 |
1.135⇒0.5675 | 77.4 |
1.11⇒0.555 | 108.2 |
1.0796⇒0.5398 | 112 |
1.0642⇒0.5321 | 148/148.5/149/149.5/151 |
1.047⇒0.5235 | 166.5/167/172/175/176.5/180 |
1.025⇒0.5125 | 190.3 |
SFG, typeⅠ | |
1.908+1.0642⇒0.6832 | 81 |
1.444+1.08⇒0.6179 | 23 |
1.135+1.0642⇒0.5491 | 112 |
1.547+0.7735⇒0.5157 | 141 |
DFG, typeⅠ | |
0.532-0.8⇒1.588 | 135 |
沿Z轴 SHG, type II | |
1.342⇒0.671 | 35 |
1.3⇒0.65 | 46 |
光谱
LBO传输频谱 | LBO非线性晶体的SHG调谐曲线 |
在不同的泵浦光(即530 nm,355 nm和266 nm)下,LBO(在“ XY”平面上的Type I(ooe))的OPO调谐曲线 |
参考文献
[1] Zubrinov I I , Sapozhnikov V K , Pylneva N A , et al. Elastic and elastooptic properties of LiB 3O 5[J]. Ceramics International, 2004, 30(7):1675-1677. |
[2] Reinvestigation on the phase transition of a LiB3O5 crystal near its melting point[J]. Journal of Crystal Growth, 2016, 435:1-5. |
[3] A Y J , A C L J , A L W , et al. The optical properties of planar waveguides in LiB3O5 crystals formed by Cu+ implantation – ScienceDirect[J]. Applied Surface Science, 2006, 253( 5):2674-2677. |
[4] Yang L , Yue Y , Mao Q , et al. Growth and nonlinear optical properties of Zn-doped LiB3O5 crystals[J]. Optical Materials, 2015, 43:6-9. |
[5] Kananen B E , Mcclory J W , Giles N C , et al. Copper-doped lithium triborate (LiB3O5) crystals: A photoluminescence, thermoluminescence, and electron paramagnetic resonance study[J]. Journal of Luminescence, 2017:S0022231317309109. |
[6] Shepelev Y F , Bubnova R S , Filatov S K , et al. LiB3O5 crystal structure at 20, 227 and 377°C[J]. Journal of Solid State Chemistry, 2005, 178(10):2987-2997. |
[7] Nikolov I , Perlov D , Livneh S , et al. Growth and morphology of large LiB 3O 5 single crystals[J]. Journal of Crystal Growth, 2011, 331(1):1-3. |
[8] Surovtsev N V , Malinovsky V K , Solntsev V P , et al. Peculiarities of LiB3O5 crystallization from melts studied by Raman spectroscopy[J]. Journal of Crystal Growth, 2008, 310(15):3540-3544. |
[9] Ogorodnikov I N , Kruzhalov A V , Porotnikov A V , et al. Dynamics of electronic excitations and localized states in LiB3O5[J]. Journal of Luminescence, 1998, 76-77(2):464-466. |
[10] I. N , Ogorodnikov, and, et al. Sub-nanosecond time-resolved spectroscopy of LiB3O5 under synchrotron radiation[J]. Journal of Luminescence, 1997. |
[11] Depci T , Oezbayoglu G , Yilmaz A , et al. The thermoluminescent properties of lithium triborate (LiB3O5) activated by aluminium[J]. Nuclear Inst & Methods in Physics Research B, 2008, 266(5):755-762. |
[12] Neumair S C , Vanicek S , Kaindl R , et al. High-pressure synthesis and crystal structure of the lithium borate HP-LiB3O5[J]. Journal of Solid State Chemistry, 2011, 42(52):no-no. |
[13] Kannan C , Kimura H , Miyazaki A , et al. Nucleation, growth and characterization of LiBO single crystals[J]. Journal of Crystal Growth, 2005, 275(1–2):e769-e774. |
[14] Lim A R , Yoon C S . Structural nature of 7Li and 11B sites in the nonlinear optical material LiB3O5 using static NMR and MAS NMR[J]. Materials Chemistry & Physics, 2014, 147(3):644-648. |
[15] Li H Q , Zhang H B , Bao Z , et al. High-power nanosecond optical parametric oscillator based on a long LiB3O5 crystal[J]. Optics Communications, 2004, 232(1-6):411-415. |
[16] Kannan C , Ganesamoorthy S , Rajesh D , et al. Anisotropic properties of self-flux grown LiB 3O 5 single crystals[J]. Solid State Communications, 2005, 136(4):215-219. |
[17] Ogorodnikov I N , Isaenko L I , Kruzhalov A V , et al. Thermally stimulated luminescence and lattice defects in crystals of alkali metal borate LiB3O5 (LBO)[J]. Radiation Measurements, 2001, 33(5):577-581. |
[18] Sabharwal S C , Tiwari B , Sangeeta. Investigations on the growth of LiB 3 O 5 crystal by top-seeded solution growth technique[J]. Journal of Crystal Growth, 2004, 263(1/4):327-331. |
[19] Sabharwal S C , Tiwari B , Sangeeta. Effect of highest temperature invoked on the crystallization of LiB 3O 5 from boron-rich solution[J]. Journal of Crystal Growth, 2003, 249(3):502-506. |
[20] Almeida A , Thomazini D , Vasconcelos I F , et al. Structural studies of lithium triborate (LBO–LiB3O5) in borophosphate glass-ceramics[J]. International Journal of Inorganic Materials, 2001, 3(7):829-838. |
与LBO非线性晶体相关的案例:
与LBO非线性晶体相关的解决方案:
与LBO非线性晶体相关的视频: