MgO:LiNbO3
掺杂MgO的LiNbO3,晶体较未掺杂LiNbO3,晶体具有高的光损伤阈值和高的非线性转换效率,而且掺杂可以使拉曼散射截面增加和声子模损耗减小。与LiNbO3晶体相比,MgO:LiNbO3 晶体在掺Nd激光器中的NCPM倍频、混频和光参量振荡的应用中有其独有的优势。MgO:LiNbO3晶体在脉冲Nd:YAG激光器和连续Nd:YAG激光器中能够分别地获得超过65%的和45%的倍频效率。MgO:LiNbO3晶体被广泛地应用于光参量振荡(OPO)、光参量放大(OPA)、准相位匹配及集成光波导中。
特点
- 同质性高
- 透明范围广
- 损伤阈值高
- 良好的光电性能
- 良好的光电弹性
- 可降低本征材料的光折变效应
相位匹配角实验值(T=293K)
相互作用波长[μm] | Φexp [deg] | Note |
SHG, o+o ⇒ e | ||
1.0642⇒0.5321 | 74.5 | 5mol% MgO, 全LN |
76 | 5mol% MgO | |
76.5 | 5mol% MgO, Li/Nb=0.97 | |
82.3 | 7mol% MgO | |
1.0795⇒0.53975 | 75.1 | 5mol% MgO, 全LN |
1.0796⇒0.5398 | 74 | 5mol% MgO, Li/Nb=0.97 |
1.3414⇒0.6707 | 54 | 5mol% MgO, 全LN |
Note: The PM angle values are strongly dependent on melt stoichiometry. |
NCPM温度的实验值
相互作用波长[μm] | T[℃] | 注意 |
SHG, o+o ⇒ e | ||
1.047⇒0.5235 | 75.3 | |
1.0642⇒0.5321 | 25.4 | 0.6mol% MgO, 全LN |
78.5 | 7mol% MgO, 沿X | |
85–109 | >5mol% MgO | |
107 | 5mol% MgO | |
110 | 5mol% MgO | |
110.6 | 5mol% MgO | |
110.8 | 7mol% MgO | |
1.0795⇒0.53975 | 115 | 5mol% MgO, 全LN |
注意:PM温度值在很大程度上取决于熔体的化学计量。 |
角度和温度带宽的实验值
相互作用波长[μm] | T[℃] | θpm[deg] | Δθint[deg] | ΔT[℃] | Note |
SHG, o+o ⇒ e | |||||
1.0642⇒0.5321 | 20 | 76 | 0.063 | 5mol% MgO | |
25.4 | 90 | 0.68 | 0.6mol% MgO | ||
107 | 90 | 2.16 | 0.73 | 5mol% MgO | |
110.6 | 90 | 0.73 | 5mol% MgO |
折射率随温度的变化
355nm | 406nm | 532nm | 633nm | 1064nm | ||
铌酸锂 | 25°C | 2.40179 | 2.32631 | 2.23622 | 2.20351 | 2.15714 |
50°C | 2.40343 | 2.32807 | 2.23765 | 2.20458 | 2.15757 | |
75°C | 2.40722 | 2.3308 | 2.2394 | 2.20607 | 2.15884 | |
掺镁铌酸锂 | 25°C | 2.38482 | 2.31248 | 2.2253 | 2.19323 | 2.14757 |
50°C | 2.38778 | 2.31441 | 2.22644 | 2.19424 | 2.14861 | |
75°C | 2.39152 | 2.31718 | 2.22819 | 2.19567 | 2.14966 |
掺杂5mol%MgO的LiNbO3的折射率温度导数
掺MgO 5 mol%的LiNbO3的折射率的温度导数 | ||
λ[µm] | dno/dT×106[ K-1] | dne/dT×106[ K-1] |
0.53975 | 16.663 | 72.763 |
0.6328 | 12.121 | 64.866 |
1.0795 | 4.356 | 54.19 |
1.3414 | 5.895 | 52.665 |
5mol%MgO:LiNbO3的二阶非线性系数的绝对值
|d31(0.852µm)|=4.9pm/V | |d33(0.852µm)|=28.4pm/V |
|d31(1.064µm)|=4.4pm/V | |d33(1.064µm)|=25.0pm/V |
|d31(1.313µm)|=3.4pm/V | |d33(1.313µm)|=20.3pm/V |
光谱
LiNbO3和MgO LiNbO3的吸收光谱:吸收边缘区域 | 未掺杂和掺杂MgO的LN晶体的透射光谱 |
具有I型相匹配(oo-e)的LiNbO3:MgO(7 mol。%)晶体中SHG强度的角度依赖性 | MgO:LiNbO3的寻常波和非寻常波在25°C时的热光常数 |
参考文献
- [1] Su Z , Meng Q , Zhang B . Analysis on the damage threshold of MgO:LiNbO3 crystals under multiple femtosecond laser pulses[J]. Optical Materials, 2016, 60:443-449.
- [2] Lv J , Cheng Y , Lu Q , et al. Femtosecond laser written optical waveguides in z-cut MgO:LiNbO3 crystal: Fabrication and optical damage investigation[J]. Optical Materials, 2016, 57:169-173.
[3] Holstein W L . Etching study of ferroelectric microdomains in LiNbO3 and MgO:LiNbO3[J]. Journal of Crystal Growth, 1997, 171(s 3–4):477-484.
[4] Li Z , Bing P , Yuan S , et al. Investigation on terahertz generation at polariton resonance of MgO:LiNbO3 by difference frequency generation[J]. Optics & Laser Technology, 2015, 69:13-16.
[5] Chen Y L , Yuan J W , Yan C F , et al. Low-pump-threshold tunable optical parametric oscillator using periodically poled MgO:LiNbO 3[J]. Optics Communications, 2007, 273(2):560-563.
[6] Lai Y J , Chen J C , Liao K C . Investigations of ferroelectric domain structures in the MgO : LiNbO 3 fibers by LHPG[J]. Journal of Crystal Growth, 2010, 198:531-535.
[7] Chen Y , Guo J , Liu X , et al. Highly efficient blue light of femtosecond pulses by second-harmonic generation in periodically poled MgO:LiNbO3[J]. Optics Communications, 2004, 238(1-3):201-204.
[8] Shen J , Ding C . Investigation of operational characteristics of terahertz-wave parametric oscillators pumped by picosecond based on MgO:LiNbO3 crystal[J]. Optik – International Journal for Light and Electron Optics, 2013, 124(15):2140-2146.
[9] A X C , B Z W , A S H , et al. Optical and structural characterization of annealed proton exchange waveguides in Y-cut MgO:LiNbO 3[J]. Optical Materials, 2005, 27( 10):1596-1601.
[10] Hong-Ki, Kim, and, et al. Measurement of cascaded phase shift in MgO:LiNbO3 single crystal by nonlinear ellipsometric method[J]. Optics Communications, 1999.
[11] Burlot R , R Moncorgé, Manaa H , et al. Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3 and LiTaO3 single crystals relevant for laser applications[J]. Optical Materials, 1996, 6(4):313-330.
[12] Li Z , Bing P , Xu D , et al. High-power tunable terahertz generation from a surface-emitted THz-wave parametric oscillator based on two MgO:LiNbO3 crystals[J]. Optik – International Journal for Light and Electron Optics, 2013, 124(21):4884-4886.
[13] Li H P , Tang D Y , Ng S P , et al. Temperature-tunable nanosecond optical parametric oscillator based on periodically poled MgO:LiNbO3[J]. Optics & Laser Technology, 2006, 38(3):192-195.
[14] Dixit N , Mahendra R , Naraniya O P , et al. High repetition rate mid-infrared generation with singly resonant optical parametric oscillator using multi-grating periodically poled MgO:LiNbO3[J]. Optics & Laser Technology, 2010, 42(1):18-22.
[15] 代丽, 刘春蕊, 闫哲华, et al. Effect of dopant concentration on the spectra characteristic in Zr4+ doped Yb:Nd:LiNbO3 crystals[J]. Journal of Rare Earths, 2017(35):761-766.
[16] Bhushan R , Yoshida H , Tsubakimoto K , et al. High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3[J]. Optics Communications, 2008, 281(14):3902-3905.
[17] Jiang L , Li B , Wang H F . Infrared absorption study of OH in MgO:LiNbO 3 doped with Cr and Nd[J]. Physics Letters A, 1995, 205(1):112-116.
[18] Zhang B , Jiao Z , Wang B . Efficient second-harmonic generation from polarized thulium-doped fiber laser with periodically poled MgO:LiNbO3[J]. Optics & Laser Technology, 2015, 69:60-64.
[19] Rodriguez-Mendoza, U. R , Santiuste M , et al. Pressure-induced effects on the spectroscopic properties of Nd3+ in MgO:LiNbO3 single crystal. A crystal field approach[J]. Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter, 2017.
与MgO:LiNbO3相关的案例:
暂无与本产品相关的案例,请访问芯飞睿的案例页面查看其他案例。
与MgO:LiNbO3相关的解决方案:
暂无与本产品相关的解决方案,请访问芯飞睿的解决方案页面了解其他解决方案。
与MgO:LiNbO3相关的视频: