KNbO3
KNbO3(铌酸钾)晶体(简称KN)是非常重要的非线性光学晶体之一。其非线性光学品质因数d2 /n3 ,在所有的氧化物晶体中名列第一,KN的平均折射率为2.2,反射率的理论值为14%,理论透过率为86%。。该晶体化学性质稳定,非线性光学系数大,对半导体860nm激光直接倍频(101mW)已得到近40mW的430nm蓝光。KN晶体由于其特殊的性能,使其成为微激光器这一新用途开发的一个重要环节。蓝色激光器的实现是当务之急,而KN晶体正是产生二次谐波,实现蓝色激光器的最理想的材料之一。
特点
- 毫秒响应时间;
- 非常低的散射损耗;
- 非线性光学系数大;
- 非线性光学系数高;
- 出色的光折变特性;
- 光照射下的高稳定性;
- 有利的相位匹配特性;
物化性质
化学式 | KNbO3 |
晶体结构 | 斜方,mm2 |
晶格参数 | a = 5.6896Å, b = 3.9692Å, c = 5.7256Å |
质量密度 | 4.617 g/cm3 |
熔点 | 1333 K |
居里温度 | 498 K |
介电轴和结晶轴的分配 | X, Y, Z ⇒ b, a, c |
P = 0.101325MPa时的比热cp | cp= 767 J/kgK |
导热系数 | κ > 3.5 W/mK |
热膨胀 | aa=5.010×10-6 /℃; ab=1.410×10-5/℃; ac=5.010×10-7/℃ |
非线性光学性质
属性 | 数值 |
非线性光学系数 | d31=-15.8 pm/V, d32=-18.3 pm/V @ 1064 nm |
最短SHG波长 | 425 nm(Ⅰ型NCPM,y切或a切) |
Ⅰ型SHG的接受角为1064 nm | Dq = 0.24 mrad / cm(内部) |
Ⅰ型SHG的接受温度为1064 nm | DT=0.3 ℃/cm |
线性光学性质
属性 | 数值 |
透明范围 | 400-5500 nm |
红外截止波长 | 5.5 μm |
吸收损失 | <=1%/cm @1064 nm |
损伤阈值 | <= 4 J/cm2 @527 nm(500ps,单脉冲) |
<= 6 J/cm2 @1054 nm(700ps,单脉冲) |
相位匹配角实验值(T=293K)
相互作用波长[μm] | φexp [deg] | θexp [deg] |
XY平面,θ=90° | ||
SHG, e + e ⇒ o | ||
0.946 ⇒ 0.473 | ≈30 | |
4.7599 ⇒ 2.37995 | 69.9 | |
YZ 平面, φ = 90° | ||
SHG, o + o ⇒ e | ||
0.86 ⇒ 0.43 | 83.5 | |
0.89 ⇒ 0.445 | 70.7 | |
0.92 ⇒ 0.46 | 64 | |
0.94 ⇒ 0.47 | 60.5 | |
1.0642 ⇒ 0.5321 | 46.4 | |
1.3188 ⇒ 0.6594 | 30.6 | |
1.3382 ⇒ 0.6691 | 29.7 | |
3.5303 ⇒ 1.76515 | 37.3 | |
4.7291 ⇒ 2.36455 | 77.3 | |
SFG, o + o ⇒ e | ||
1.3188 + 0.6594 ⇒ 0.4396 | 62.3 | |
1.3188 + 1.0642 ⇒ 0.5889 | 37.7 | |
4.7762 + 3.1841 ⇒ 1.9105 | 46.6 | |
5.2955 + 3.5303 ⇒ 2.1182 | 59.5 | |
XZ 平面, φ = 0°, θ > Vz | ||
SHG, o + o ⇒ e | ||
1.0642 ⇒ 0.5321 | 70.4 | |
1.3188 ⇒ 0.6594 | 56.8 | |
1.3382 ⇒ 0.6691 | 56.2 | |
3.5303 ⇒ 1.76515 | 58.8 | |
SFG, o + o ⇒ e | ||
1.3188 + 1.0642 ⇒ 0.5889 | 62.6 | |
5.2955 + 3.5303 ⇒ 2.1182 | 86.1 |
T=295K时温度带宽的实验值
相互作用波长[μm] | θexp [deg] | ΔT [◦C] |
YZ 平面, φ = 90° | ||
SHG, o + o ⇒ e | ||
1.0642 ⇒ 0.5321 | 46.4 | 0.39 |
1.3382 ⇒ 0.6691 | 29.7 | 0.59 |
3.5303 ⇒ 1.76515 | 37.1 | 2.3 |
SFG, o + o ⇒ e | ||
5.2955 + 3.5303 ⇒ 2.1182 | 59.5 | 2.4 |
XZ平面, φ = 0°, θ >Vz | ||
SHG, o + o ⇒ e | ||
1.0642 ⇒ 0.5321 | 71.4 | 0.77 |
1.3382 ⇒ 0.6691 | 56.2 | 2.2 |
3.5303 ⇒ 1.76515 | 58.1 | 10.1 |
光谱
KNbO3-相位匹配角的温度变化 | 室温下KNbO3的折射率分散 |
KNbO3-透射光谱 | KNbO3-光学吸收 |
参考文献
[1] Baudisch M , Hemmer M , Pires H , et al. Performance of MgO:PPLN, KTA, and KNbO3 for mid-wave infrared broadband parametric amplification at high average power[J]. Optics Letters, 2014, 39(20):5802-5. |
[2] Kim J H , Yoon C S . Domain switching characteristics and fabrication of periodically poled potassium niobate for second-harmonic generation[J]. Applied Physics Letters, 2002, 81(18):3332-3334. |
[3] Zysset B , Biaggio I , Gunter P N . Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence[J]. Journal of the Optical Society of America B, 1992, 9(3). |
[4] Umemura N , Yoshida K , Kato K . Phase-Matching Properties of KNbO_3 in the Mid-Infrared[J]. Applied Optics, 1999, 38(6):991-994. |
[5] Uematsu Y . Nonlinear Optical Properties of KNbO3 Single Crystal in the Orthorhombic Phase[J]. Japanese Journal of Applied Physics, 1974, 13(9):1362-1368. |
[6] Baumert J C , Hoffnagle J , Gunter P . Nonlinear Optical Effects In KNbO3 Crystals At AlxGa1_xAs, Dye, Ruby And Nd:YAG Laser Wavelengths.[C]// European Conference on Optics. International Society for Optics and Photonics, 1985. |
[7] Yoshiguchi T , Ota T , Adachi N . Crystal Growth of KNbO 3 by Solution-Dropping Method[J]. Materials Science Forum, 2007, 544-545:697-700. |
[8] Yamanouchi K , Wagatsuma Y , ODaGawa H , et al. Single crystal growth of KNbO3 and application to surface acoustic wave devices[J]. Journal of the European Ceramic Society, 2001, 21(15):2791-2795. |
[9] Shao-Yi, Yong-Qiang, Zhang, et al. First-principles study of structural, electronic, elastic, and optical properties of cubic KNbO3 and KTaO3 crystals[J]. Physica status solidi, B. Basic research, 2017, 254(5). |
[10] Grabowska E . Selected perovskite oxides: Characterization, preparation and photocatalytic properties—A review[J]. Applied Catalysis B Environmental, 2016, 186:97-126. |
[11] Comes R , Lambert M , Guinier A . The chain structure of BaTiO3 and KNbO3[J]. Solid State Communications, 1968, 6(10):715-719. |
[12] Zgonik M , Schlesser R , Biaggio I , et al. Materials constants of KNbO3 relevant for electro- and acousto-optics[J]. Journal of Applied Physics, 1993, 74(2):1287-1297. |
[13] MD Fontana, Metrat G , Servoin J L , et al. Infrared spectroscopy in KNbO3 through the successive ferroelectric phase transitions[J]. Journal of Physics C Solid State Physics, 1984, 17(3):483-514. |
[14] A, Magrez, E, et al. Growth of Single-Crystalline KNbO3 Nanostructures.[J]. ChemInform, 2006, 37(15):no-no. |
[15] Tennery V J , Hang K W . Thermal and X‐Ray Diffraction Studies of the NaNbO3KNbO3 System[J]. Journal of Applied Physics, 1968, 39. |
[16] Wu, Xing, and, et al. Progress in KNbO3 crystal growth[J]. Journal of Crystal Growth, 1986, 78(3):431-437. |
[17] Baumert J C , P Günter, Melchior H . High Efficiency Second Harmonic Generation in KNbO3 Crystals[J]. Optics Communications, 1983, 48(3):215-220. |
[18] Currat R , Comes R , Dorner B , et al. Inelastic neutron scattering in orthorhombic KNbO3[J]. Journal of Physics C:Solid State Physics, 1974. |
[19] Matthews D G , Conroy R S , Sinclair B D , et al. Blue microchip laser fabricated from Nd:YAG and KNbO3[J]. Optics Letters, 1996, 21(3):198-200. |
[20] Krakauer H , Yu R , Wang C Z , et al. Dynamic local distortions in KNbO3[J]. Journal of Physics Condensed Matter, 1999, 11(18):3779. |
[21] U, Flückiger, and, et al. On the preparation of pure, doped and reduced KNbO3 single crystals[J]. Journal of Crystal Growth, 1978. |
[22] Yang Y , Jung J H , Yun B K , et al. Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO(3) nanowires.[J]. Advanced Materials, 2012, 24(39):5357-5362. |
与KNbO3相关的案例:
暂无与本产品相关的案例,请访问芯飞睿的案例页面查看其他案例。
与KNbO3相关的解决方案:
暂无与本产品相关的解决方案,请访问芯飞睿的解决方案页面了解其他解决方案。
与KNbO3相关的视频:
暂无与本产品相关的视频,请访问芯飞睿的视频页面播放其他视频。