Cr:YAG
我司的Cr4+:YAG晶体,又称掺铬钇铝石榴石晶体,化学式为Cr:Y3Al5O12,是一种综合性比较优良的调Q晶体产品。不仅可以用作Q 开关,还可以用作增益介质,因为它具有优异的物理化学性质。在激光测距仪、LIDAR和LIBS 系统的无源Q开关激光器领域有广泛的应用。Cr:YAG具有化学稳定、耐用、抗紫外线、导热性好、损伤阈值高(>500 MW/cm2)、操作简单等优点,正在超越LiF和有机染料等传统材料。Cr:YAG是用于无源Q开关(激光二极管或灯泵浦)Nd:YAG、Nd:YLF、Nd:YVO4的优秀且广泛使用的电光材料和其他 0.8~1.2µm 的 Nd(或Yb)掺杂激光器,也是一种可用作CW、脉冲或自锁模可调谐 NIR 固态激光器的活性介质,可调谐范围为1340 – 1580nm以及工作波长为950-1100nm的激光器中用于Q开关的介质。1060 nm 波段的吸收饱和可用于具有闪光灯或激光二极管泵浦的小型 Nd:YAG 振荡器,而不是基于染料或LiF:F中心无源Q开关,使Cr4+:YAG晶体可以实现自锁模 (KML) 状态。它提供了在1450-1580nm处构建脉冲持续时间短于100fs的激光源的机会。
特点
- 高导热率
- 高损伤阈值(> 500MW/cm2)
- 优异的理化特性
- 辐射稳定性
物理和化学特性
属性 | 数值 |
化学式 | Cr4+:Y3Al5O12 |
晶体结构 | cubic – la3d |
晶格参数Å | 12.01 |
取向 | [100] or [110] < ±0.5° |
质量密度 | 4.56 g/cm3 |
莫氏硬度 | 8.5 |
杨氏模量 | 335 GPa |
抗拉强度 | 2 GPa |
熔点 | 1970°C |
导热系数 | 0.1213 |
比热/(J·g-1·K-1) | 0.59 |
热膨胀/(10-6 /°C @ 25°C) | 7.8 <111> |
7.7 <110> | |
8.2 <100> | |
抗热震参数 | 800 W/m |
消光比 | 25dB |
泊松比 | 0.25 |
折射率@ 1064 nm | 1.83 |
电荷补偿离子 | Ca2+, Mg2+ |
光学性质
属性 | 数值 |
光密度 | 0.1 to 0.8 |
荧光寿命 | 3.4μs |
浓度 | 0.5 mol % ~ 3 mol % |
发射波长 | 1350 nm ~ 1600 nm |
吸收系数 | 1.0 cm-1 ~ 7 cm-1 |
基态吸收截面 | 4.3×10-18 cm2 |
发射态吸收截面 | 8.2×10-19 cm2 |
传输 | 10% to 90% |
涂层 | AR≤ 0.2% @1064nm |
损伤阈值 | > 500 MW / cm2 |
抛光
属性 | 数值 |
方向公差 | < 0.5° |
厚度/直径公差 | ±0.05 mm |
表面平整度 | <λ/8@632 nm |
波前失真 | <λ/4@632 nm |
表面质量 | 5-Oct |
平行 | 10〞 |
垂直 | 5ˊ |
通光孔径 | >90% |
倒角 | <0.1×45° |
HR涂层 | <= 0.2% (@ 1340nm) |
最大尺寸 | 2*2-15*15 mm×20mm |
光谱
参考文献
[1] Saiki T , Nakatsuka M , Fujioka K , et al. Cross-relaxation and spectral broadening of gain for Nd/Cr:YAG ceramic lasers with white-light pump source under high-temperature operation[J]. Optics Communications, 2011, 284(12):2980-2984. |
---|
[2] Saiki T , Funahashi K , Motokoshi S , et al. Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers[J]. Optics Communications, 2009, 282(4):614-616. |
[3] Wu Y , Jiang L , Qiu F , et al. Fabrication of transparent Yb,Cr:YAG ceramics by a solid-state reaction method[J]. Ceramics International, 2006, 32(7):785-788. |
[4] Jiying, Peng, Yi, et al. Passively Q-switched mode locking in a compact Nd:GdVO4/Cr:YAG self-Raman laser[J]. Optics Communications, 2012, 285(24):5334-5336. |
[5] Peng J Y , Zheng Y , Shi Y X , et al. Passively Q-switched a -cut Nd:GdVO 4 self-Raman laser with Cr:YAG[J]. Optics & Laser Technology, 2012, 44( 7):2175-2177. |
[6] A low viscosity slurry system for fabricating chromium doped yttrium aluminum garnet (Cr:YAG) transparent ceramics[J]. Journal of the European Ceramic Society, 2015, 35(14):S095522191530025X. |
[7] Yi X , Zhou S , Chen C , et al. Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs[J]. Ceramics International, 2014, 40(5):7043-7047. |
[8] Honda Y , Motokoshi S , Jitsuno T , et al. Temperature dependence of optical properties in Nd/Cr:YAG materials[J]. Journal of Luminescence, 2014, 148:342-346. |
[9] Lin, Hong-Yi, Sun, et al. Comparative study between Nd:GYSGG and Nd:YAG lasers passively Q-switched by a Cr:YAG crystal[J]. Journal for Light and Electronoptic, 2018. |
[10] Villafana-Rauda E , R Chiu, Mora-Gonzalez M , et al. Dynamics of a Q-switched Nd:YVO4/Cr:YAG laser under periodic modulation[J]. Results in Physics, 2018, 12. |
[11] Chen X , Lu T , Wei N , et al. Fabrication and photoluminescence properties of Cr:YAG and Yb,Cr:YAG transparent ceramic[J]. Optical Materials, 2015, 49:330-336. |
[12] Cafiso S , Ugolotti E , Schmidt A , et al. Sub-100-fs mode-locking of the Cr:YAG laser using monolayer graphene saturable absorber[C]// Cleo. IEEE, 2013. |
[13] Bernard J E , Alcock A J , Chepurov S V , et al. Measurement of the frequency of acetylene transitions at 1540 nm with a mode-locked Cr:YAG laser[C]// Leos Summer Topical Meetings. IEEE, 2005. |
[14] Chen J C , Lo C Y , Huang K Y , et al. Mapping of Cr ions and refraction index profile in Cr:YAG crystal fiber with double-cladding structure[J]. Annals of Physical and Rehabilitation Medicine, 2004. |
[15] Jaspan M A , Welford D , Xiao G , et al. Atypical behavior of Cr:YAG passively Q-switched Nd:YVO4 microlasers at high-pumping rates[J]. Filtration Industry Analyst, 2000. |
[16] Lin J H , MD Wei, Hsu H H , et al. High peak power output of a diode-pumped Q-switched and mode locked Nd:LuVO4 with Cr:YAG saturable absorber[C]// Conference on Lasers & Electro-optics-pacific Rim. IEEE, 2007. |
[17] Dong J , Shirakawa A , Ueda K I , et al. Composite Yb:YAG/Cr:YAG ceramics self-Q-switched laser[C]// Conference on Lasers & Electro-optics. IEEE, 2008. |
[18] Sorokin E , Naumov S , Kalashnikov V L , et al. Spectral broadening of 50 fs Cr:YAG pulses around 1.5 /spl mu/m in the tapered fiber. 2003. |
[19] D Welford, Jaspan M A . Single-frequency operation of a Cr:YAG laser from 1332 to 1554 nm[J]. Journal of the Optical Society of America B, 2004, 21(12):2137-2141. |
[20] Saiki T , Imasaki K , Motokoshi S , et al. Oscillation Property of Disk-Type Nd/Cr:YAG Ceramic Lasers with Quasi-Solar Pumping[C]// Conference on Lasers & Electro-optics. American Institute of Physics, 2006. |
[21] Lo C Y , Tu S Y , Huang K Y , et al. Fused-silica-clad Cr:YAG fiber. IEEE, 2003. |
[22] Tsunekane, Taira. High temperature operation of passively Q-switched, Cr:YAG/Nd:YAG micro-laser for ignition of engines. IEEE, 2009. |
[23] Cho W B , Schmidt A , Sun Y C , et al. Carbon-Nanotube Mode-Locked Cr:YAG Laser[C]// Lasers & Electro-optics. IEEE, 2010. |
与Cr:YAG相关的案例:
与Cr:YAG相关的解决方案:
与Cr:YAG相关的视频:
暂无与本产品相关的视频,请访问芯飞睿的视频页面播放其他视频。