Ho:YAG

Ho3+离子的辐射波长接近2100nm,位于人眼安全波段,在大气中具有很高的透过率,在遥感探测、激光测距、激光雷达等领域具有重要的应用前景。同时,2100nm位于人体组织高度吸收的水分子吸收峰。医用Ho激光在人体内的穿透深度只有几十微米,对人体周围组织的热损伤很小。因此,它被广泛应用于医疗手术和治疗中。Ho激光也可用作泵浦源,通过晶体(如ZGP晶体)的非线性效应,可以实现波长为3~5mm的红外激光。
特点
- 高激光增益
- 安全的眼睛和良好的大气传输
- 高能量存储能力
- 低量子缺陷
- 荧光寿命长
- 发射截面大
- 高斜边效率
- 更低的上转换损耗和再吸收损耗
材料规格
材料 | Ho: YAG |
浓度公差(atm%) | 0.2% ~3%(根据客户要求) |
取向 | <111>结晶方向 |
平行性 | <10” |
垂直性 | <5” |
表面质量 | 符合MIL-O-13830 B的10/5划痕/凹陷 |
波前失真 | λ/8每英寸 @633nm |
表面平整度 | λ/10@ 633 nm |
通光孔径 | >90 |
厚度/直径公差 | 直径棒:(+ 0,-0.05)mm,(±0.5)mm |
物理和化学特性
晶体结构 | 立方 |
晶格常数 | 12.01Å |
密度 | 4.56g/cm3 |
熔点 | 1970°C |
导热系数 | 14W/m/K, 20°C; 10.5W/m/K, 100°C |
抗热震性 | 790W/m |
热光学系数(dn / dT) | 7.3×10-6/ K |
热膨胀/(10-6•K-1 @ 25°C) | [100]:8.2×10-6/K@ 0~250℃; [110]:7.7×10-6/K@0~250℃; |
[111]: 7.8×10-6/K@0~250℃ | |
硬度(莫氏) | 8.5 |
杨氏模量/ GPa | 3.17×104Kg/mm2 |
剪切模量/ Gpa | 310GPa |
消光比 | >28dB |
比热 | 0.59J/g.cm3@0-20℃ |
溶解度 | 不溶于水,微溶于普通酸 |
泊松比 | 0.3 |
光学和光谱性质
激光跃迁 | 5I7→5I8 |
激光波长 | 2.05μm |
有效受激吸收截面 | 1.09×10-20cm2 |
有效激发发射截面 | 1.14×10-20cm2 |
泵浦波长 | 1908 nm |
激光波长 | 2090 nm |
荧光寿命 | 7 ms |
量子效率 | 1 |
折射率@ 1.030μm | 1.82 |
上转换损失系数 | 1.8, 2.6, 5.3×10-18cm3/s |
吸收和发射光谱
![]() | ![]() |
参考文献
[1] Duan X M , Shen Y J , Yao B Q , et al. A 106W Q-switched Ho:YAG laser with single crystal[J]. Optik – International Journal for Light and Electron Optics, 2018, 169:224-227. |
[2] Wang Y P , Dai T Y , Wu J , et al. A Q-switched Ho: YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm: YLF laser[J]. Infrared Physics & Technology, 2018, 91:8-11. |
[3] J. Pokorný and O. Köhler and T. Hanuš and P. Koranda and H. Jelínková and M. Němec and M. Urban and R. Grill. C82 Urinary calculus and artificial sample fragmentation during Er:YAG and Ho:YAG lithotripsy in vitro[J]. European Urology Supplements, 2009. |
[4] Antipov O L , Zakharov N G , Fedorov M , et al. Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue[J]. Medical Laser Application, 2011, 26(2):67-75. |
[5] Mcdaniel S A , Berry P A , Cook G , et al. CW and passively Q-Switched operation of a Ho:YAG waveguide laser[J]. Optics & Laser Technology, 2017, 91:1-6. |
[6] Li J , Chen Q , Wu W , et al. Densification and optical properties of transparent Ho:YAG ceramics[J]. Optical Materials, 2013, 35(4):748-752. |
[7] Kaczmarek S M , ?Endzian W , ?Ukasiewicz T , et al. Effects of gamma irradiation and annealing treatments on the performance of Cr;Tm;Ho:YAG lasers[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 1998, 54(13):2109-2116. |
[8] Zhao, T, Chen, et al. Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers[J]. OPTICAL MATERIALS -AMSTERDAM-, 2013. |
[9] W. X , Zhang, and, et al. Fabrication, properties and laser performance of Ho:YAG transparent ceramic[J]. Journal of Alloys & Compounds, 2010. |
[10] Sidorowicz, Agata, Nakielska, et al. Fabrication and optical studies of transparent Tm, Ho:YAG ceramics[J]. Optical Materials Amsterdam, 2015. |
[11] M, Falconieri, and, et al. Fluorescence dynamics in an optically-excited Tm,Ho:YAG crystal[J]. Optical Materials, 1997. |
[12] Yang Y , Ye L , Bao R , et al. Growth and characterization of Yb:Ho:YAG single crystal fiber[J]. Infrared Physics & Technology, 2018:85-89. |
[13] Yang X T , Mu Y L , Zhao N B . Ho:SSO solid-state saturable-absorber Q switch for pulsed Ho:YAG laser resonantly pumped by a Tm:YLF laser[J]. Optics & Laser Technology, 2018, 107:398-401. |
[14] Bagayev, S. N , Osipov, et al. Ho:YAG transparent ceramics based on nanopowders produced by laser ablation method: Fabrication, optical properties, and laser performance[J]. OPTICAL MATERIALS -AMSTERDAM-, 2015. |
[15] Yuan J H , Yao B Q , Duan X M , et al. Resonantly pumped high power acousto-optical Q-switched Ho:YAG ceramic laser[J]. Optik – International Journal for Light and Electron Optics, 2016, 127(4):1595-1598. |
[16] Edvardsson S , ?Berg D . The energy matrix using determinantal product states applied to Ho:YAG[J]. Journal of Alloys and Compounds, 2000, 303(none):280-284. |
[17] Jiang, Zhang, Zhenguo, et al. Tunable single-longitudinal-mode operation of a sandwich-type YAG/Ho:YAG/YAG ceramic laser[J]. Infrared physics and technology, 2016. |
与Ho:YAG相关的案例:
暂无与本产品相关的案例,请访问芯飞睿的案例页面查看其他案例。
与Ho:YAG相关的解决方案:
与Ho:YAG相关的视频: