当前位置: 首页 » Products » 电光产品 » LiNbO3(铌酸锂)

LiNbO3(铌酸锂)

当前位置: 首页 » Products » 电光产品 » LiNbO3(铌酸锂)
LiNbO<sub>3</sub>(铌酸锂)” class=”wp-image-920″/></div><div class=

LiNbO3晶体,又称为铌酸锂晶体,简称为LN晶体,是一种综合性能比较优秀的电光晶体。LN晶体具有良好的机械和物理性能,由于其透明度范围广和成本低,是光学偏振元件的理想选择。它是光纤通信应用中的优良材料,例如隔离器、循环器、光束置换器和其他偏振光学器件。在Nd:YAGNd:YLF Ti:Sapphire 激光器中的电光调节器和Q开关上以及光纤中的调制器等相关领域具有广泛应用。相比于其他电光晶体,该晶体具有体积小、不容易潮解、大电光系数、透明范围广、高电光效率、低吸收损失和低损伤阈值等相关优点,可以运用在532nm、1064nm和2940nm的激光器以及1000 nm以上波长的倍频和1064 nm泵浦光的光参量放大。除电光性能以外,铌酸锂晶体还具有优良的声光、压电和非线性特性,可广泛应用于民用和军用领域。

  • 透明范围广
  • 高电光效率
  • 稳定的机械和化学性能
  • 低吸收损失
  • 低损伤阈值
  • 体积小
  • 不容易潮解
  • 高温稳定性
  • 大电光系数
  • 容易长成大晶体

晶体特性

晶体结构三角空间群R3c
熔点1255±5℃
居里点1140±5℃
莫氏硬度5
密度4.64g/cm3
吸收系数~0.1%/cm@1064nm
溶解度不溶于H2O
相对介电常数eT11/e0:85
eT3333/e0:29.5
导热系数38W/m/K @25℃
透明度范围420-5200nm
光学均匀性~5 ×10-5/cm
Sellmeier方程no2(λ)=4.9048+0.11768/(λ2-0.04750)-0.027169λ2
ne2(λ)=4.5820+0.099169/(λ2-0.04443)-0.021950λ2
电光系数gT33=32pm/V ; gS33=31pm/V
gT31=10pm/V; gS31=8.6pm/V
gT22=6.8pm/V; gS22=3.4pm/V
半波电压(直流)3.03KV
损伤阈值200MW/cm2

晶体规格

尺寸公差±0.1mm
角度公差±0.5°
表面质量20/10 S/D
清晰光圈>90% 中央
表面平整度<λ/8 @633nm
波前畸变<λ/4 @633nm
并行性<20弧秒
垂直度<5弧分
增透膜根据要求定制

激光级LiNbO3晶体的标准规格

透射波前畸变优于 l/4 @ 633nm
尺寸公差(W±0.1mm) x (H±0.1mm) x (L±0.2mm)
通光孔径中心直径超过90
平整度l/8 @ 633nm
表面质量20 /10 刮痕/凹陷
平行性优于20弧秒
垂直性5 arc min
角度公差D< 0.5o, Df < 0.5o
增透涂层在两个表面上都在1064/532 nm处形成双波段增透膜,每个表面的R <0.2%在1064 nm处,R <0.5%在0.532 nm

参考文献

[1]  Akbar G ,  Reza A . Pressure sensor based on polarization rotation in z-cut LiNbO3 optical waveguide[J]. Sensors & Actuators A Physical, 2018:S0924424718306575-.
[2]  Hichem H ,  Djamel B . A comparative study for two LiNbO3 cuts (Y-Z and Y-X) in detecting bulk acoustic microwaves using Probabilistic Neural Network[J]. Engineering ence & Technology An International Journal, 2018:S2215098616311053.
[3] The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications[J]. Journal of Materiomics, 2018.
[4]  Wang H ,  Zhang Y , D Xiang, et al. Growth and mechanical properties of near-stoichiometric LiNbO 3 crystal[J]. Optik, 2018, 164:385-389.
[5]  Lavrov S D ,  Kokhanchik L S ,  Gainutdinov R V , et al. Nonlinear-optical characterization of planar domain patterns written in LiNbO3 by electron-beam irradiation[J]. Optical Materials, 2018, 75:325–330.
[6]  Bettella G ,  Zamboni R ,  Pozza G , et al. LiNbO3 integrated system for opto-microfluidic sensing[J]. Sensors & Actuators B: Chemical, 2019.
[7] Characterization of Mn-doped electrospun LiNbO3 nanofibers by Raman spectroscopy – ScienceDirect[J]. Materials Characterization, 2017, 127:209-213.
[8]  Gamze A ,  Duyar C ? . LiNbO 3 thin films for all-solid-state electrochromic devices[J]. Optical Materials, 2018, 82:160-167.
[9]  Sanna S ,  Schmidt W G . GaN/LiNbO 3 (0 0 0 1) interface formation calculated from first-principles[J]. Applied Surface Science, 2010, 256(19):5740-5743.
[10]  A M G ,  B A L ,  B D K , et al. Incipient plasticity and surface damage in LiTaO3 and LiNbO3 single crystals – ScienceDirect[J]. Materials & Design, 2018, 153:221-231.
[11] Mingkai, Hu, Franklin, et al. Design, fabrication and characterization of SAW devices on LiNbO3 bulk and ZnO thin film substrates – ScienceDirect[J]. Solid-State Electronics, 2018, 150:28-34.
[12] X Zhang,  Yuan J ,  Xia P , et al. Controllable Synthesis of LiNbO3 Micro-octahedrons and Micro-cubes via a Molten-Salt Process[J]. Ceramics International, 2018, 44(18):22874-22879.
[13]  Presti D A ,  Guarepi V ,  Videla F , et al. Intensity modulator fabricated in LiNbO3 by femtosecond laser writing[J]. Optics and Lasers in Engineering, 2018.
[14]  Zhang B ,  Xiong B ,  Li Z , et al. Mode tailoring of laser written waveguides in LiNbO3 crystals by multi-scan of femtosecond laser pulses[J]. Optical Materials, 2018, 86:571-575.
[15] Senatulin, B, R, et al. XPS study of Li/Nb ratio in LiNbO3 crystals. Effect of polarity and mechanical processing on LiNbO3 surface chemical composition[J]. Applied Surface Science A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis & Behaviour of Materials, 2016.
[16]  Ega?A A , V Tormo-Márquez,  Torrente A , et al. Swift heavy ion irradiation induces enhancement in electrical conductivity of LiTaO 3 and LiNbO 3 crystals[J]. Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms, 2017:S0168583X17309679.
[17]  Lj A ,  Yw A ,  Kt B , et al. In situ imaging ellipsometer using a LiNbO 3 electrooptic crystal[J]. Thin Solid Films, 2014, 571:532-537.

谱图

LiNbO3拉曼光谱-南京光宝-CRYLINK
LiNbO3拉曼光谱

如果你对我们的LiNbO3(铌酸锂)感兴趣,请联系我们获取价格或申请样品。

LiNbO3(铌酸锂)相关的文章:

暂无与本产品相关的文章,请访问芯飞睿的文章页面播放其他文章。

LiNbO3(铌酸锂)相关的案例:

LiNbO3(铌酸锂)相关的解决方案:

LiNbO3(铌酸锂)相关的视频: