Nd:YAG
我司的Nd:YAG 晶体产品,又称掺钕钇铝石榴石晶体,是一种综合性能良好的用作固态激光器的激光介质晶体。Nd:YAG晶体中的原子被闪光灯激发,晶体产生以特定波长(1064 nm)传播的放大光。Nd:YAG晶体在生物物理,医学,军事,机械,科研和建筑等领域有着广泛的应用。该产品有高光学质量、良好的机械和热性能的特点。Nd:YAG是通过将Nd离子掺杂到YAG晶体中而获得的成熟的激光晶体之一。Nd:YAG激光晶体的吸收带宽为730-760nm和790-820nm,通常由闪光管或激光二极管泵浦。典型的激光发射峰值为1064nm,波长为946nm,1120nm,1320nm和1440nm激光也可以通过一些测量发射,Q开关和锁定模式适用于获得不同波长的激光(532nm,分别为266nm,213nm等)和脉冲宽度(10-25ns)。Nd:YAG晶体广泛用于各类固态激光器系统——倍频连续波、高能调Q等。通常,高浓度掺杂晶体应用于脉冲激光器中,低浓度掺杂晶体通常用于连续波输出。
特点
- 增益系数高
- 激光阈值低
- 优异的光学,机械和物理性能
- 高斜率效率
- 宽吸收带宽
材料规格
钕浓度公差(atm%) | 0.1- 2.5(+/-0.1)atm% |
取向 | [001] or [110] or [111] <±0.5° |
平行性 | 10〞 |
垂直性 | 5ˊ |
表面质量 | 10-5(MIL-O-13830A) |
波前失真 | λ/4@632 nm |
表面平整度 | λ/8@632 nm |
通光孔径 | >95 % |
倒角 | <0.2×45° |
长度公差 | +0.5/-0mm |
厚度/直径公差 | ±0.05 mm |
最大尺寸 | dia (3~12.7)×(3~150) mm |
损坏阈值 | >750 MW/cm2@1064 nm 10 ns 10 Hz |
消光比 | >30 dB(取决于实际尺寸) |
精密研磨 | 400 grit |
物理和化学特性
晶体结构 | 立方 – la3d |
晶格常数 | 12.01 Å |
密度 | 4.56 g/cm3 |
熔点 | 1950 °C |
导热系数/(W·m-1·K-1 @ 25°C) | 14 |
比热/(J·g-1·K-1) | 0.59 |
断裂应力 | 1.3-2.6*103 kg/cm2 |
热膨胀率/(10-6·K-1 @ 25°C) | [100] 取向–8.2 |
[110] 取向–7.7 | |
[111] 取向–7.8 | |
硬度(莫氏) | 8.5 |
杨氏模量/ GPa | 317 |
剪切模量/ Gpa | 54.66 |
消光比 | 25 dB |
泊松比 | 0.25 |
光学和光谱性质
激光跃迁 | 4F3/2 →> 4I11/2 |
光子能量 | 1.86×10-19 J |
激光跃迁波长,λl(nm) | 1064 |
泵浦跃迁波长,λp(nm) | 808 |
泵浦跃迁带宽,Δλp(nm) | <4 |
激光跃迁带宽,Δλl(nm) | ~0.6 |
泵过渡峰截面,σp(E-20 cm2) | 6.7 |
激光跃迁峰截面,σl(E-20 cm2) | 28 |
泵过渡饱和强度φp(kW / cm2) | 12 |
激光跃迁饱和强度φl(kW / cm2) | 2.6 |
激光跃迁饱和通量Γl,sat(J / cm2) | 0.6 |
最小泵浦强度Imin(kW / cm2) | ~0 |
上部激光管寿命,τ(毫秒) | 0.26 |
量子缺陷分数 | 0.24 |
分数热产生 | 0.37 |
折光率 | 1.8197 @1.064 µm |
荧光寿命 | 230 µs |
吸收和发射光谱
参考文献
[1] Siqi, Zhu, Zaijun, et al. A \\{LD\\} side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal[J]. Optics & Laser Technology, 2014. |
[2] Panahibakhsh S , Jelvani S , Maleki M H , et al. Characterization of the optical properties of ArF laser irradiated Nd:YAG crystal[J]. Optik – International Journal for Light and Electron Optics, 2016. |
[3] Lin, Hong-Yi, Sun, et al. Comparative study between Nd:GYSGG and Nd:YAG lasers passively Q-switched by a Cr:YAG crystal[J]. Journal for Light and Electronoptic, 2018. |
[4] Kanchanavaleerat E , D Cochet-Muchy, Kokta M , et al. Crystal growth of high doped Nd:YAG[J]. Optical Materials, 2004, 26(4):337-341. |
[5] Zhang M , Guo H , Han J , et al. Distribution of Neodymium and properties of Nd:YAG crystal by horizontal directional solidification[J]. Journal of Crystal Growth, 2012, 340(1):130-134. |
[6] Panahibakhsh S , Jelvani S , Maleki M H , et al. Effect of XeCl laser irradiation on the defect structure of Nd:YAG crystals[J]. Optics & Lasers in Engineering, 2014, 60(sep.):12-17. |
[7] Ikesue A , Yan L A , Yoda T , et al. Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing[J]. Optical Materials, 2007, 29(10):1289-1294. |
[8] Fu Y , Ge L , Li J , et al. Fabrication, microstructure and laser performance of composite Nd:YAG transparent ceramics[J]. Optical Materials, 2016:S0925346716302415. |
[9] Ren Y , Zhang L , Romero C , et al. Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting[J]. Applied Surface Science, 2018, 441(MAY31):372-380. |
[10] Li S L , Ye Y K , Wang M W . Femtosecond laser written channel optical waveguide in Nd:YAG crystal[J]. Optics & Laser Technology, 2014, 58(6):89–93. |
[11] Yadegari M , Asadian M , Saeedi H , et al. Formation of gaseous cavity defect during growth of Nd:YAG single crystals[J]. Journal of Crystal Growth, 2013, 367(mar.15):57-61. |
[12] Vatnik S M . Gain and laser operation of 1.1%Nd:YAG crystal fibers[J]. Optics Communications, 2001, 197(4-6):375-378. |
[13] Dong J , Deng P , Gan F , et al. Highly doped Nd:YAG crystal used for microchip lasers[J]. Optics Communications, 2001, 197(4-6):413-418. |
[14] Meng-yao, Wu, Peng-fei, et al. Investigation of multi-segmented Nd:YAG/NdYVO4 crystals and their laser performance end-pumped by a fiber coupled diode laser[J]. Optik, 2019, 179:367-372. |
[15] Yuan Y , Li B , Guo X . Laser diode pumped Nd:YAG crystals frequency summing 589nm yellow laser[J]. Optik – International Journal for Light and Electron Optics, 2016, 127(2):710-712. |
[16] Sokol M , Kalabukhov S , Kasiyan V , et al. Mechanical, thermal and optical properties of the SPS-processed polycrystalline Nd:YAG[J]. Optical Materials, 2014, 38(7):204-210. |
[17] Walsh, Brian M . Nonlinear mixing of Nd:YAG lasers; harmonic and sum frequency generation[J]. Optical Materials, 2016:S0925346716303548. |
[18] Torchia G A , C Méndez, Roso L , et al. Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing[J]. Journal of Luminescence, 2008, 128(5-6):754-756. |
[19] Qiang A , Dong N , Feng C , et al. Photonic crystal structure in Nd:YAG laser crystals[J]. Optical Materials, 2012, 34(11):1811-1814. |
[20] Li S , Ma P , Zhu X , et al. Post-treatment of nanopowders-derived Nd:YAG transparent ceramics by hot isostatic pressing[J]. Ceramics International, 2017, 43(13):10013-10019. |
[21] Ma B , Zhang W , Shen B , et al. Preparation and characterization of highly transparent Nd:YAG/YAG composite ceramics[J]. Optical Materials, 2018, 79:63-71. |
[22] Wei S , Junji Z . Preparation and properties of Yb:YAG and Nd:YAG nanocrystals[J]. Rare Metal Materials and Engineering, 2017, 46(3):591-595. |
[23] Banerjee J , Muralidhar K . Role of internal radiation during Czochralski growth of YAG and Nd:YAG crystals[J]. International Journal of Thermal Sciences, 2006, 45(2):151-167. |
[24] Nurmohammadi T . Optik – International Journal for Light and Electron Optics. 2014. |
[25] Kosti? S , Lazarevi? Z ? , Radojevi? V , et al. Study of structural and optical properties of YAG and Nd:YAG single crystals[J]. Materials Research Bulletin, 2015, 63:80-87. |
[26] An Q , Jia Y , Liu H , et al. Ultrafast laser inscribed cladding waveguides in Nd:YAG crystal for mid-infrared wavelength[J]. Optics & Laser Technology, 2014, 56:382-386. |
[27] Ajates J G , Romero C , Castillo G R , et al. Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals[J]. Optical Materials, 2017, 72:220. |
与Nd:YAG相关的案例:
暂无与本产品相关的案例,请访问芯飞睿的案例页面查看其他案例。
与Nd:YAG相关的解决方案:
与Nd:YAG相关的视频: