TeO2
TeO2晶体,又称二氧化碲,是一种具有高品质因数的性能优良的声光晶体材料。TeO2晶体具有响应速度快,驱动功率小,衍射效率高,性能稳定可靠等优点。广泛应用于声光偏转器、声光调制器、声光谐波器、声光滤波器和可调谐滤波器等各类声光器件。用氧化碲制作的声光器件,在相同的通光孔径下,分辨率可有数量级的提高,因此TeO2晶体是一种拥有广阔应用前景的声光器件材料,尤其是声光调制器和声光谐波器,在光计算、光通讯和光显微成像等技术中有广泛的应用。
特点
- 高折射率
- 声音衰减小
- 高品质因数
- 出色的声光特性
- 较大的声光品质因数
- 对可见光具有高透明度
物理和化学特性
属性 | 数值 |
化学式 | TeO2 |
摩尔质量 | 159.60 g/mol |
颜色 | 无色 |
密度 | 5.99 ± 0.03 /cm3 |
熔点 | 733°C |
硬度 | 3-4莫氏硬度计 |
热膨胀 | 10-6 К-1: α11= 17.7; α22 = 17.7; α33= 5.5 |
对称性 | 四方晶系, 422 (D4) |
晶格参数 | a = 4.8122 Å; c = 7.6157 Å |
透过率 | >70% @ 633nm |
发射范围 | 0.33 ~ 5.0 μm |
介电常数 | ε11 = 22.9; ε33 = 24.7 |
弹性常数·10-10 N/m2 | c11 = 5.57; c33 = 10.58; c44 = 2.65; c66 = 6.59; c12 = 5.12; c13 = 2.18 |
光弹性系数@0.6328 μm | p11 = 0.0074; p12 = 0.187; p13 = 0.340; p31 = 0.0905; p33 = 0.240; p44 = -0.17; p66 = -0.0463 |
折射率
λ, μm | no | ne | Δn = ne– no |
0.4047 | 2.4315 | 2.6167 | 0.1852 |
0.4358 | 2.3834 | 2.5583 | 0.1749 |
0.4678 | 2.3478 | 2.5164 | 0.1686 |
0.48 | 2.3366 | 2.5036 | 0.167 |
0.5086 | 2.315 | 2.4779 | 0.1629 |
0.5461 | 2.2931 | 2.452 | 0.1589 |
0.5893 | 2.2738 | 2.4295 | 0.1557 |
0.6328 | 2.2597 | 2.4119 | 0.1522 |
0.6438 | 2.2562 | 2.4086 | 0.1524 |
0.69 | 2.245 | 2.3955 | 0.1505 |
0.8 | 2.226 | 2.373 | 0.147 |
1 | 2.208 | 2.352 | 0.144 |
光学活性,沿[001]
λ, μm | p, deg/mm | λ, μm | p, deg/mm |
0.3698 | 587.1 | 0.5893 | 104.9 |
0.3783 | 520.6 | 0.6328 | 86.9 |
0.3917 | 437.4 | 0.7 | 67.4 |
0.4152 | 337.6 | 0.8 | 48.5 |
0.4382 | 271 | 0.9 | 37.4 |
0.463 | 221.1 | 1 | 29.5 |
0.4995 | 171.2 | 1.1 | 23.8 |
0.53 | 143.4 |
声光特性:λ=0.6328μm
Nsound | Usound | Vsound 103 м/с | Nlight | Elight | M1 10-7сm2 · с/г | M210-18с3/г |
[100] | [100] | 2.98 | [010] | [100] | 0.097 | 0.048 |
[100] | [100] | – | [010] | [001] | 22.9 | 10.6 |
[001] | [001] | 4.26 | [010] | [100] | 142 | 34.5 |
[001] | [001] | – | [010] | [001] | 113 | 25.6 |
[100] | [010] | 3.04 | [001] | optional | 3.7 | 1.76 |
[110] | [110] | 4.21 | [-110] | [110] | 323 | 0.802 |
[110] | [110] | – | [-110] | [001] | 16.2 | 3.77 |
[101] | [101] | 3.64 | [-101] | [010] | 101 | 33.4 |
[010] | [010] | 2.98 | [-101] | [101] | 42.6 | 20.4 |
[110] | [-110] | 0.617 | [001] | optional | 68.6 | 793 |
[101] | [-101] | 2.08 | [010] | [100] | 76.4 | 77 |
TeO2调制器特性
АОM的主要特点 | TeO2调制器的典型值 |
光学波长范围 | 514nm, 633nm, 1064nm, 1330nm |
光学孔径 | 0.3 mm – 3 mm |
工作模式 | 纵向的, 轴(001) |
光上升时间 | 光束直径为9-200 nsec |
光束分离(633 nm) | 10-30 mrad |
衍射效率 | 70-85 % |
调制频率(-3db) | 6-50 MHz |
TeO2偏转器特性
АОD的主要特点 | TeO2偏转器的典型值 |
光学波长范围 | 540nm-530nm, 630nm-850nm, 700nm-1100nm, 1064nm, 1330nm |
光学孔径 | 1 mm – 10 mm |
工作模式> | 横波,轴3-15度(110) |
中心频率 | 20- 200 MHz |
带宽 | 20-100 MHz |
衍射效率 | 60-95% |
时间光圈 | 1-15 μs |
分辨率(T.BW产品) | 200-2000 |
光上升时间 | 光束直径为9-200 nsec |
偏角 | 10-100 mrad |
Δ偏转角 | 5-50 mrad |
射频输入功率 | 0,1- 2 Wt |
TeO2可调谐滤波器特性
АОTF的主要特点 | TeO2 AOTF的典型值 |
调谐范围 | 450-750nm, 900-1200nm, 1200-2500nm, 2500-5000nm |
带宽 | 0.5 nm – 15 nm |
工作模式 | 慢剪切,非共线传播 |
角孔 | 2-10度 |
光学孔径 | 3×3 mm – 30×30 mm |
衍射效率 | 70-85 % |
射频功率 | 1-10 Wt |
参考文献
[1] Mirzaei A , Park S , Sun G J , et al. CO gas sensing properties of In4Sn3O12 and TeO2 composite nanoparticle sensors[J]. Journal of Hazardous Materials, 2016, 305(Mar.15):130-138. |
[2] Dafinei I , Diemoz M , Longo E , et al. Growth of pure and doped TeO2 crystals for scintillating bolometers[J]. Nuclear Inst & Methods in Physics Research A, 2005, 554(1-3):195-200. |
[3] Kokh A E , Shevchenko V S , Vlezko V A , et al. Growth of TeO2 single crystals by the low temperature gradient Czochralski method with nonuniform heating[J]. Journal of Crystal Growth, 2013, 384(dec.1):1-4. |
[4] S, Kumaragurubaran, and, et al. Investigations on the growth of Bi2TeO5 and TeO2 crystals[J]. Journal of Crystal Growth, 1999. |
[5] Beke S , Kobayashi T , Sugioka K , et al. Time-of-flight mass spectroscopy of femtosecond and nanosecond laser ablated TeO2 crystals[J]. International Journal of Mass Spectrometry, 2011, 299(1):5-8. |
[6] Casali N , Bellini F , Dafinei I , et al. Monte Carlo simulation of the Cherenkov radiation emitted by TeO2 crystal when crossed by cosmic muons[J]. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment, 2013, 732(dec.21):338-341. |
[7] Jalilian, Jaafar, Naseri, et al. Electronic and optical properties of paratellurite TeO2 under pressure: A first-principles calculation[J]. Journal for Light & Electronoptic, 2017. |
[8] Syrbu N N , Cre?U R V . The superposition of one- and two-phonon absorption and radiation in TeO2 crystal[J]. Infrared Physics & Technology, 1996, 37(7):769–775. |
[9] Mangin J , Veber P . PtTe2: Potential new material for the growth of defect-free TeO2 single crystals[J]. Journal of Crystal Growth, 2008, 310(12):3077-3083. |
[10] Sudha A , Maity T K , Sharma S L , et al. An extensive study on the structural evolution and gamma radiation stability of TeO 2 thin films[J]. Materials Science in Semiconductor Processing, 2018, 74:347-351. |
[11] A, Watterich, and, et al. Paramagnetic and diamagnetic defects in e− and UV-irradiated TeO2 single crystal[J]. Nuclear Instruments & Methods in Physics Research, 2002. |
[12] B C A A , B C B A , D A B C , et al. Production of high purity TeO 2 single crystals for the study of neutrinoless double beta decay[J]. Journal of Crystal Growth, 2010, 312( 20):2999-3008. |
[13] High-stability acousto-optical devices using bulk acoustic waves in TeO2[J]. Electronics Letters, 2007, 14(17):535-536. |
[14] Barucci M , Brofferio C , Giuliani A , et al. Measurement of Low Temperature Specific Heat of Crystalline TeO2 for the Optimization of Bolometric Detectors[J]. Journal of Low Temperature Physics, 2001, 123(5-6):303-314. |
[15] Xun G , Shang X , D Zhang. Study on SAW characteristics of amorphous-TeO2/36°Y-X LiTaO3 structures. IEEE, 2009. |
[16] Stavrakieva D , Ivanova Y , Pyrov J . On the composition of the crystal phases in the PbO TeO2 system[J]. Journal of Materials Science, 1988, 23(5):1871-1876. |
[17] Yong J K , Choi S W , Kang S Y , et al. Enhancement of the benzene-sensing performance of Si nanowires through the incorporation of TeO2 heterointerfaces and Pd-sensitization[J]. Sensors and Actuators B Chemical, 2017, 244(jun.):1085-1097. |
[18] Physical properties and structural studies of lithium borophosphate glasses containing TeO 2[J]. Journal of Solid State Chemistry, 2019, 270:547-552. |
[19] Nagarajan V , Chandiramouli R . DFT investigation of NH3 gas interactions on TeO2 nanostructures[J]. Progress in Natural Science: Materials International, 2016, 26( 2):129-138. |
[20] Park S , An S , Ko H , et al. Enhancement of ethanol sensing of TeO2 nanorods by Ag functionalization[J]. Current Applied Physics, 2013, 13(3):576-580. |
光谱
与TeO2相关的案例:
与TeO2相关的解决方案:
与TeO2相关的视频:
暂无与本产品相关的视频,请访问芯飞睿的视频页面播放其他视频。