ZGP
磷锗锌晶体(ZnGeP2,简称ZGP)属于正单轴晶体。是用于光参量振荡器(OPO)技术的最常用的非线性晶体之一,ZGP晶体具有有效非线性系数大(deff=75pm/V,是其他常用非线性晶体的数倍或数十倍),损伤阈值高(>30GW/cm2),宽的透光波段(0.74~12.4μm),吸收系数小(2~3μm的吸收系数小于0.04cm-1),热导率高(360mW/cm·K),性能稳定,制作工艺成熟。能生长出大尺寸的晶体等许多优点.是3~5m波段中红外OPO的理想晶体。
特点
- 非线性系数大
- 透射区域为74 μm至12μm
- 相对损坏阈值高
- 高导热率
- 透明区域广泛
- 宽光谱范围内的相位匹配
物理和化学特性
属性 | 数值 |
化学式 | ZnGeP2 |
晶体结构 | 四方晶系,42m |
晶格参数 | a=b=5.467Å, c=12.736Å |
质量密度 | 4.16 g/cm3 |
莫氏硬度 | 5.5 |
熔点 | 大约1040°C |
导热系数 | 180 W/m/K |
热膨胀系数 | β‖,5×10-6/K; β⊥,7.8×10-6/K |
双折射 | 正单轴 |
非线性光学性质
属性 | 数值 |
SHG相位匹配范围 | 3177 ∼10357nm (Type I) |
NLO系数 | d36=75 ± 8 pm/V |
Type Ⅰ deeo=d36 sin2θcos2φ | |
Type Ⅱ doeo =deoo=d36 sinθsin2φ | |
损坏阈值 | |
在2.79 um | 30 GW/cm2 (150 ps) |
在10.6 um | 1 GW/cm2 (2 ns) |
线性光学性质
属性 | 数值 |
透明范围 | 0.74 – 12 um |
吸收系数 | α<0.05cm-1 @2050-2100 nm |
折光指数 | |
@ 2.05微米 | no= 3.1478, ne= 3.1891 |
@ 2.79微米 | no= 3.1333, ne= 3.1744 |
@ 5.30微米 | no= 3.1136, ne= 3.1547 |
@ 10.6微米 | no= 3.0729, ne= 3.1143 |
光谱
ZGP传输光谱 | ZGP的SHG调谐曲线(eeo型) |
ZGP的OPO调谐曲线在2800nm的泵浦灯下。 | ZGP的OPO调谐曲线在2090nm的泵浦灯下。 |
参考文献
[1] Huang C , Wu H , Xiao R , et al. High-pressure-assisted synthesis of high-volume ZnGeP 2 polycrystalline[J]. Journal of Crystal Growth, 2018:S0022024818300411. |
[2] Liu M , Zhao B , Chen B , et al. Research of thermodynamic properties of mid-infrared single crystal ZnGeP 2[J]. Materials Science in Semiconductor Processing, 2018:S1369800117325908. |
[3] Vasilyeva I G , Nikolaev R E , Verozubova G A . Nonstoichiometry of ZnGeP2 crystals probed by static tensimetric method[J]. Journal of Solid State Chemistry, 2010, 183(9):2242-2247. |
[4] Yue X , Xu M , Du W , et al. Surface finishing of ZnGeP2 single crystal by diamond tool turning method[J]. Optical Materials, 2017:S0925346716307704. |
[5] D Yang, Zhao B , Chen B , et al. Impurity phases analysis of ZnGeP2 single crystal grown by Bridgman method[J]. Journal of Alloys & Compounds, 2017, 709:125-128. |
[6] Verozubova G A , Gribenyukov A I , Korotkova V V , et al. ZnGeP2 synthesis and growth from melt[J]. Materials Science and Engineering B, 1997, 48(3):191-197. |
[7] Mengyan P W , Baker B B , Lichti R L , et al. Hyperfine spectroscopy and characterization of muonium in ZnGeP 2[J]. Physica B Condensed Matter, 2009, 404(23-24):5121-5124. |
[8] Zhang S R , Zhu S F , Xie L H , et al. Theoretical study of the structural, elastic and thermodynamic properties of chalcopyrite ZnGeP2[J]. Materials Science in Semiconductor Processing, 2015, 38:41-49. |
[9] Lei Z , Okunev A O , Zhu C , et al. Photoelasticy method for study of structural imperfection of ZnGeP2 crystals[J]. Journal of Crystal Growth, 2016, 450(Complete):34-38. |
[10] Tripathy S K , Kumar V . Electronic, elastic and optical properties of ZnGeP2 semiconductor under hydrostatic pressures[J]. Materials Science & Engineering B, 2014, 182(1):52-58. |
[11] Yang D H , Zhao B J , Chen B J , et al. Growth of ZnGeP 2 single crystals by modified vertical Bridgman method for nonlinear optical devices[J]. Materials Science in Semiconductor Processing, 2017, 67:147-151. |
[12] Vasilyeva I G , Demidova M G . Chemical analysis of ZnGeP2 as a new line of research of heterogeneity in bulk crystals[J]. Talanta, 2012, 101(none):187-191. |
[13] Chaudhary, K A, K. S , et al. Generation of terahertz from ZnGeP2 crystal and its application to record the time-resolved photoacoustic spectra of nitromethane. |
[14] Yang C H , Wang M , Xia S X , et al. Synthesis and Growth of ZnGeP_2 Crystals. Journal of Synthetic Crystals. |
[15] Wang Z , Mao M , Wu H , et al. Study on annealing of infrared nonlinear optical crystal ZnGeP2[J]. Journal of Crystal Growth, 2012, 359(none):11–14. |
[16] Verozubova G A , Okunev A O , Gribenyukov A I , et al. Growth and defect structure of ZnGeP2 crystals[J]. Journal of Crystal Growth, 2010, 312(8):1122-1126. |
[17] Verozubova G A , Gribenyukov A I , Korotkova V V , et al. Synthesis and growth of ZnGeP 2 crystals for nonlinear optical applications[J]. Journal of Crystal Growth, 2000, 213(s 3–4):334-339. |
[18] Fan Q , Zhu S , Zhao B , et al. Influence of annealing on optical and electrical properties of ZnGeP2 single crystals – ScienceDirect[J]. Journal of Crystal Growth, 2011, 318(1):725-728. |
[19] Hofmann D M , Romanov N G , Gehlhoff W , et al. Optically detected magnetic resonance experiments on native defects in ZnGeP 2[J]. Physica B Condensed Matter, 2003, 340-342(none):978-981. |
[20] Verozubova G A , Okunev A O , Gribenyukov A I . Bulk growth of ZnGeP2 crystals and their study by X-ray topography[J]. Journal of Crystal Growth, 2014, 401(sep.1):782-786. |
[21] Wu X X , Zheng W C . Research on the EPR parameters and local structure of Cr4+ ion at the tetragonal Ge4+ site in ZnGeP2 crystal[J]. Physica B Physics of Condensed Matter, 2015, 473:72-74. |
与ZGP相关的案例:
暂无与本产品相关的案例,请访问芯飞睿的案例页面查看其他案例。
与ZGP相关的解决方案:
暂无与本产品相关的解决方案,请访问芯飞睿的解决方案页面了解其他解决方案。
与ZGP相关的视频: